Green’s Matrices of Second Order Elliptic Systems with Measurable Coefficients in Two Dimensional Domains

نویسندگان

  • HONGJIE DONG
  • SEICK KIM
چکیده

Gi j(·, y) = 0 on ∂Ω ∀y ∈ Ω, where δik is the Kronecker delta symbol and δy(·) is the Dirac delta function with a unit mass at y. In the scalar case (i.e., when N = 1), the Green’s matrix becomes a real valued function and is usually called the Green’s function. We prove that if Ω has either finite volume or finite width, then there exists a unique Green’s matrix in Ω; see Theorem 2.12. The same is true when Ω is a domain above a Lipschitz graph (e.g., Ω = R+); see Theorem 2.21. We also establish growth properties of the Green’s matrices including logarithmic pointwise bounds. We emphasize that we do not require Ω to be bounded nor to have a regular boundary in Theorem 2.12. Compared to the result of Dolzmann and Müller [4], where Ω is assumed to be a bounded Lipschitz domain (In fact, their methods work whenever there exists an Lp-theory for the equation under consideration on the domain), our result is quite an improvement in this respect. Although there is no Green’s matrix for Ω = R2, there is a possible definition of a fundamental

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

Efficient Spectral Sparse Grid Methods and Applications to High-Dimensional Elliptic Equations II. Unbounded Domains

This is the second part in a series of papers on using spectral sparse grid methods for solving higher-dimensional PDEs. We extend the basic idea in the first part [18] for solving PDEs in bounded higher-dimensional domains to unbounded higher-dimensional domains, and apply the new method to solve the electronic Schrödinger equation. By using modified mapped Chebyshev functions as basis functio...

متن کامل

Gaussian Estimates for Fundamental Solutions of Second Order Parabolic Systems with Time-independent Coefficients

Abstract. Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients on Rn. In particular, in the case when n = 2 they obtained Gaussian upper bound estimates for the heat kernel without imposing further assumption on the coefficients. We study the fundamental solutions of the systems of second o...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

A Note on Heat Kernel Estimates for Second-order Elliptic Operators

We study fundamental solutions to second order parabolic systems of divergence type with time independent coefficients, and give another proof of a result by Auscher, McIntosh and Tchamitchian on the Gaussian bounds for the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008